Investigations of the Chemical Bonding in the $P_4O_6S_m$ (m = 0-4) Series by Combination of Experimental and Theoretical Vibrational Analysis

A. R. S. Valentim, B. Engels,* and S. D. Peyerimhoff

Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany

Received: November 6, 1998; In Final Form: April 26, 1999

The bonding situation within the $P_4O_6S_m$ (m = 0-4) series is studied using a combination of experimental and theoretical vibrational analysis. A correlation between the spectra of the compounds is undertaken and the shifts of the vibrational frequencies within the series are analyzed. The frequency shifts found within the $P_4O_6S_m$ (m = 0-4) series are furthermore compared with those found within the P_4O_n (n = 6-10) series. Our analysis indicates a somewhat larger increases in the P–O cage bond strength in the oxygen-substituted compounds relative to the sulfur substitution. This interpretation is consistent with the same conclusion based on a comparison of the P–O bond lengths shortening in the cage in going from P_4O_6 to P_4O_{10} (0.05 Å) and P_4O_6 to $P_4O_6S_4$ (0.03 Å).

Section 1. Introduction

Phosphorchalcogenides, $P_4O_6 X_n$ (X = O, S, Se; n = 0-4), which have been studied extensively in recent years,¹ form a specially tailored system. The gradual changes observed in their bonding properties along the series make them an ideal system for an investigation of the relationship between the molecular geometry and the strength of chemical bonding. Since the force field of a molecule is directly related to its bonding situation, a detailed analysis of the vibrational spectrum provides the possibility to study the strength of its chemical bonds. In previous work,²⁻⁴ we used this approach to study the influence of the substituents X on the P_4O_6 cage bonds.

Employing ab initio methods, we computed the IR and Raman vibrational frequencies to assign the experimental spectra. Using the scaled quantum mechanics (SQM) method proposed by Pulay,⁵ the theoretical and the experimental data were combined to obtain improved theoretical force fields. Since only the theoretical data allow an reliable correlation of the vibrational bands from one spectrum to another within the series, this combined approach used for vibrational analysis made it possible to study quantitatively the variations in the force field of the P_4O_6X molecules.

In previous works,^{2,3} differences in the cage bonds situation in the monosubstituted and disubstituted series, $P_4O_6X_m$ (X = O, S, Se; m = 1-2), have been studied by analyzing the frequency shifts in their vibrational spectra. In addition, the variations in the vibrational spectra connected with the $P^V = X$ (X = O, S, and Se) terminal bond were analyzed. These changes are less interesting, because they reflect the known relation between the different masses and bond strengths of the $P^V = X$ bond. Nevertheless, they must be considered because of their couplings to cage vibrations.

In our recent investigation,⁴ the variations of the bonding situation within the series P_4O_n (n = 6-10) have been studied. The results showed that vibrations, which involve motions of the oxygen substituents (relative to the cage), appear either in

the low-energy region or in the high-energy region of the vibrational spectrum. In the energy range above 1100 cm⁻¹, only *stretching* vibrations of the terminal P=O bonds are observed. These bonds are so strong that couplings of the P= O stretching motions with motions of the P–O cage bonds are small. In the low-energy range (below 260 cm⁻¹), all bands correspond to bending motions of the terminal P=O bonds. These vibrations couple with libration of the P₄O₆ cage. The band shift to higher frequencies within the P₄O₀ (n = 6-10) series, which is observed in the middle range of the spectrum (300–1000 cm⁻¹), is a clear indication for the increase in the strength of the P–O cage bonds. Only for two bands, a shift to lower frequencies occurs, but this effect results from the increase of the mass of the moving units when going from P₄O₆ (phosphorus atom) to P₄O₁₀ (P=O unit).

In the present work, the vibrational spectra of the $P_4O_6S_m$ (m = 0-4) series will be studied. Differences between this series and the oxygen series P_4O_n (n = 6-10) will be discussed to analyze if oxygen influences the P_4O_6 cage bonds stronger than sulfur substituents. This question is still under debate since the difference in the cage bond contraction in the two series is very small (≈ 2 pm).

Experimental IR and Raman spectra are already known for $P_4O_6S_m$ (m = 1-4).^{2,3,6-8} The spectra of P_4O_6S and $P_4O_6S_2$ have been already assigned employing ab initio methods, while for $P_4O_6S_4$ only a preliminary experimental assignment based on the Raman polarization measurements is known.⁸ For $P_4O_6S_3$, no assignment has been reported so far.

Section 2. Technical Details

The theoretical methods used in the present work are already discussed in our previous works.^{2–4} Molecular equilibrium geometries were optimized employing the SCF method in combination with a DZP basis set given by Huzinaga,⁹ and the vibrational frequencies and IR and Raman intensities were calculated at the stationary point of the molecules under consideration. All these calculations were performed with the Gaussian94 program package.¹⁰ Errors of the HF force field

^{*} To whom correspondence should be addressed. E-mail: bernd@thch.unibonn.de. Fax: (0228) 73-9066.

Figure 1. Molecular Structure of $P_4O_6S_2$; schematic illustration of the different P–O bonds. The four different bonds (within $C_{2\nu}$ symmetry) are specified by different shadings.

were corrected with the scaled quantum mechanical (SQM)¹¹ force field as proposed by Pulay and co-workers.⁵

Scale factors were obtained by a least-squares fit to known experimental data of P_4O_6 , P_4O_6S , and $P_4O_6S_4$. Because the scaled frequencies of the present work were obtained employing averaged scaling factors, a small deviation ($\approx 10 \text{ cm}^{-1}$) exists to previous theoretical data, where individually optimized scaling factors were used. Descriptions of the nuclear displacements in the various modes were obtained using animations of the program MOLDEN.¹²

Section 3. Results and Discussion

The molecular structure of $P_4O_6S_2$ together with a summary of abbreviation used in the present paper is given in Figure 1.

A comparison between the experimental and the theoretical bond distances (Table 1) shows that the geometrical parameter optimized at the HF/DZP level generally deviate by less than 1.5 pm from those obtained by X-ray diffraction methods.⁶ As already described earlier,¹ substitution of the P₄O₆ cage by chalcogenide leads to a shortening of the bonds between P^V and the neighboring oxygens (O_b) and an elongation of the O_b $-P^{III}$ bonds.

In P₄O₆S₄, the P–O cage bonds are 162 pm; i.e., they are shorter by about 3 pm than those in P₄O₆ (165 pm). This constitutes a smaller contraction of the P–O cage bonds due to the sulfur addition than found in the equivalent P₄O_n (n = 6-10) series due to oxygen addition, where the cage bonds are 160 pm in P₄O₁₀. This bond difference between P₄O₁₀ and P₄O₆S₄ is too small to make the definitive statement that oxygen or sulfur substituents have a different influence on these cage bonds. On the other hand, a finding that the frequency shifts along the P₄O₆S_m (m = 0-4) series are smaller than those observed for the oxygen substitution could support such a conclusion based on the cage bond length contraction.

Theoretical and Experimental Frequencies. The vibrational frequencies of the $P_4O_6S_m$ (m = 0-4) molecules obtained from

various measurements and calculations are collected in Tables 2–6. The calculated vibrational frequencies for P_4O_6 , which have been already reported in our previous study,⁴ are also listed in Table 6 for comparison. The accuracy of the data are similar to those found for the P_4O_n (n = 6-10) series,⁴ i.e., in the range of 10 cm⁻¹.

In the following the IR and Raman spectra of $P_4O_6S_m$ (m = 3-4) will be assigned. The assignment for the P₄O₆S and P₄O₆S₂ can be taken from our earlier work.²⁻⁴ As observed for P₄O₆S and $P_4O_6S_2$, the bending modes of the $P^V=S$ units are found in the lower region of the spectrum of $P_4O_6S_3$: the two lowest modes (Table 4) correspond to a linear combination of the motion of the P^{V} =S units (1e: 148 cm⁻¹; 1a₁: 160 cm⁻¹). Both modes possess strong Raman intensities but very small IR intensities. The strongest band in the Raman spectra of $P_4O_6S_3$ corresponds to the cage breathing mode, which is experimentally found at 485 cm⁻¹ (theoretical 479 cm⁻¹). The P^V=S stretching</sup> vibrations of $P_4O_6S_3$ are the 7a₁ mode (891 cm⁻¹) and the 10e mode (795 cm⁻¹). The highest two modes (11e, 8a₁) in the spectrum of P₄O₆S₃ correspond to stretching vibrations within the PO₃ units of the P_4O_6 cage. They are computed at 974 and 970 cm⁻¹, respectively, and are observed in the infrared spectrum as a very strong and broad band at 960 cm^{-1} .

Table 5 gives a comparison between our computed frequencies of $P_4O_6S_4$ and experimental results taken from the literature. The agreement between our data and those given by Jansen and co-workers is good,^{1,6} taking into account that crystal environment effects lead to a lower symmetry and, hence, to a splitting of degenerate modes. Additional bands in the experimental spectra may be attributed to combination bands or overtones. An example is the band found at 387 cm⁻¹. This band does not fit to any computed fundamental, but may arise from a combination band of the lowest f_2 mode (158 cm⁻¹) and the lowest f_1 mode (220 cm⁻¹). Bands in this experimental spectra which appear above 1100 cm⁻¹ must stem from residuary oxygen compounds, as was already assumed by Clade et al.¹

For $P_4O_6S_4$, the P^V =S stretch modes are localized in the same energy range as the stretching vibrations of the P–O cage bonds (\approx 900 cm⁻¹). The in-phase motion of the P^V=S is found at 929 cm⁻¹, while the out-of-phase motion is located at 807 cm⁻¹ (5f₂). The highest mode in the P₄O₆S₄ spectrum is the 6f₂ mode (986 cm⁻¹). While the 5f₂ corresponds mainly to an out-ofphase stretching motion of the P^V=S, with a small contribution of the cage modes, the 6f₂ can be described as a symmetric stretching motion of the P–O cage bonds with a small contribution of the P^V=S stretching. The coupling of P^V=S and the P–O cage vibrations indicate that the products of their respective **G** und **F** matrix elements are similar.

Comparison of the Vibrational Spectra of P₄**O**₆**S**_m (m = 0-4) **Series.** Our comparison of the vibrational spectra of the molecules P₄O₆**S**_m (m = 0-4) is based on the computed frequencies, obtained with the SQM force field technique. Discussing the vibrations in terms of linear combinations of

TABLE 1: Bond Lengths (in Å) in Phosphorus Oxide Sulfide^a

	P_4O_6		P ₄ O ₆ P ₄ O ₆ S P ₄ O ₆ S ₂		$P_4O_6S_3$		$P_4O_6S_4$			
bonds	exptl	theor	exptl	theor	exptl	theor	exptl	theor	exptl	theor
$P^{(III)} - O_a$	1.653	1.648	1.637	1.646	1.636	1.645				
$P^{(III)} - O_b$			1.678	1.662	1.671	1.659	1.661	1.657		
$P^{(V)} - O_b$			1.596	1.611	1.595	1.611	1.595	1.613		
$P^{(V)} - O_c$					1.614	1.624	1.611	1.625	1.620	1.624
$P^{(V)}-S$			1.890	1.882	1.885	1.876	1.882	1.868	1.886	1.864

^{*a*} All theoretical values are obtained from a HF/DZP geometry optimization,^{3,13} while the experimental data are X-ray data given in a review by Clade et al.¹

TABLE 2: Comparison of the Calculated Vibrational Spectra of P_4O_6S with Experimental Data (in cm⁻¹)

	1	theory	experiment						
		rel intensities	ref 14	re	ref 2				
sym	scaled	IR	IR	Raman	IR	Raman			
Е	186	0		186(s)		178(s)			
A_2	286	0							
E	295	0		300(m)		296(m)			
Е	315	0		313(w)		313(w)			
A_1	337	0		344(m)		344(m,p)			
Е	413	3	415(m)	415(m)	417(m)	415(m)			
?						451(w)			
?						466(w)			
A_1	510	5		505(s)	502(w)	505(s,p)			
Е	562	0		mi	ssing				
A_1	585	3		592(s)	598(m)	592(s,p)			
A_1	617	6	626(m)	632(m)	631(m)	632(s,p)			
Е	630	3	642(m)	653(w)	646(w)	653(w)			
A_2	659	0							
Е	687	2	663(m)		668(w)				
A_1	697	0	687(m)	690(w)	688(m)	690(w,p)			
Е	702	0		mi	ssing				
A_1	812	0	850(m)	814(w)	830(m)	814(w)			
A_1	947	100	1040-086(c)	958(w)	948(s,br)	945(w,p)			
Е	960	59	³⁴⁰ ³⁰⁰⁽⁸⁾						
	2×510				1010				
	2×585				1202				
	2×617				1264				
	?				2853				
	?				2924				

TABLE 3: Comparison of the Calculated Vibrational Spectra of $P_4O_6S_2$ with Experimental Data (in cm⁻¹)

			experiment			
		theory	ref	3		
sym	scaled	rel intensities IR	IR	Raman		
A_1	156	0		159(vs,p)		
\mathbf{B}_1	186	0				
A_2	194	0		187(vs)		
\mathbf{B}_2	213	0		205(m)		
\mathbf{B}_1	298	0		290(w)		
A_2	303	0		301(w)		
A_1	307	0				
A_2	326	0				
B_2	337	0				
B_2	346	0		343(m)		
A_1	351	0		357(s,p)		
B_1	426	4	421(s)	420(w)		
A_1	501	3	502(s)	504(vs,p)		
B_2	539	3	524(s)	525(vw)		
B_1	571	0				
A_1	585	0		583(w)		
B_2	627	13	628(s)	632(m)		
A_1	665	3	651(m)	652(vw)		
A_2	686	0				
\mathbf{B}_1	689	4	677(m)			
A_1	691	0				
\mathbf{B}_1	704	0				
B_2	731	0	728(vw)			
A_2	739	0				
A_1	741	1	742(vw)			
B_2	772	0				
A_1	855	0	849(w)	848(w)		
B_2	965	100	060(m hr)			
A_1	972	72	200(vs,0f)			
B_1	975	81				

nuclear displacements within the PO₃ and S=PO₃ subunits provides a clear picture of changes within the P₄O₆S₄ series because their first (P₄O₆) and last (P₄O₆S₄) members are built of four equivalent PO₃ and S=PO₃ subunits, respectively. Furthermore, we distinguish between so-called "cage modes", which are primarily connected to vibrations of P₄O₆ cage atoms, and modes which are dominated by the terminal P^V=S vibration.

TABLE	4:	Compa	arison	of the	Calcul	ated	Vibr	ational
Spectra	of	$P_4O_6S_3$	with	Experii	nental	Data	(in c	(m^{-1})

		theory	experi ref	ment 6
sym	scaled	rel intensities IR	IR	Raman
Е	148	0		146(vs)
A_1	160	0		155(vs)
				163(m)
E	202	0		198(s)
A_2	220	0	inac	tive
Е	300	0		308(w)
E	333	0		326(w)
E	342	1		349(s)
A_2	370	0	inac	tive
A_1	365	1		372(s)
			450(vw)	446(m)
A_1	479	4	486(s)	485(vs)
E	557	2	536(s)	
A_1	574	0	568(vw)	568(w)
E	642	13	639(vs)	638(w)
		0	652(vw)	656(vw)
A_1	673	1	666(vw)	678(m)
E	716	0	702(w)	703(vw)
A_1	724	3	713(w)	715(vw)
			722(w)	
E	744	1	767(m)	
A_2	774	0	inac	tive
E	795	0	miss	ing
A_1	891	3	894(sh)	893(w)
A_1	970	67	060(ava har)	
E	974	100	900(VS,Dr)	951(vw)

TABLE 5: Comparison of the Calculated Vibrational Spectra of $P_4O_6S_4$ with Experimental Data (in $cm^{-1})$

	theo	ory		e	experi	ment		
		intensities	re	f 1	1	ref 7	ref 8	
sym	scaled	IR	IR	Raman	IR	Raman	Raman	sym
							95	
				133(w)				
Е	141	0		145(vs)		148	150(dp)	Е
				155(vs)				
F_2	158	0		160(vs)				
				170(w)				
-		0				. 194	194(dp)	F_2
F_1	220	0			inac	tive		-
				071()		259		Е
				2/1(VW)				
Б	215	0		200(VW) 217(VW)				
Ľ	515	0		317(vw) 328(w)				
Fa	350	1		320(w) 352(m)		353	354(dn)	Fa
F1	365	0		552(III)	inact	tive	554(up)	12
11	505	0		387(m)	mae	live		
A_1	392	0		406(vs)		400	400(dp)	A_1
				447(vw)			447(p)	1
				. ,	460		47	F_2
							498(dp)	
F_2	573	2		548(m)			-	
				569(m)				
			646(m)	646(vw)				
F_2	675	13	671(s)	669(w)		666	668(dp)	F_2
A_1	706	0	704(w)	698(w)		694	700(dp)	A_1
-		0	712(w)	713(vw)				-
E	744	0	753(w)		769			F_2
F ₁	115	0			inac	ive		
\mathbf{F}_2	807	0	00 0 ()	000()	miss	ing		Б
	020	0	882(m)	898(VW)		897	0.24(m)	E A
A ₁ E.	929	100	$078(y_{\rm C})$	929(W)	081	950	934(p)	A ₁ E.
1.5	900	100	1139(w)		201			1.5
	?		1214(m)					
	?		1328(m)					
	?		1388(m)					
			(/					

Couplings between cage vibrations and $P^V = S$ vibrations have to be considered to extract information about changes in the

TABLE 6: Comparison of the Vibrational Spectra (in cm⁻¹)

modes description	P_4O_6	P_4O_6S	$P_4O_6S_2$	$P_4O_6S_3$	$P_4O_6S_4$
linear combination of P ^V =S bending vibrations		1 e 186	1 a ₁ 156 1 a ₂ 194	1 e 148 1 a ₁ 160	1 e 141 1 f ₂ 158
bending vibration of $P^{V}=S$ with contributions from the libration motion (see Figure 2)			1 b ₁ 186 1 b ₂ 213	2 e 202 1 a ₂ 365	$1 \; f_1 \; 220$
symmetric bending of P-O-P cage bonds	1 e 298	2 e 295	2 a ₁ 307 2 a ₂ 303	3 e 300	2 e 315
umbrella motion of PO ₃ , respectively, $S=P^{V}O_{3}$ units (see Figure 2)	$1 f_2 410$	1 a ₁ 337 3 e 315	3 a ₁ 351 2 b ₂ 337 2 b ₁ 298	5 e 342 2 a ₁ 220	$2 f_2 350$
libration motion of PO ₃ , respectively, S=P ^V O ₃ units (see Figure 2)	$1 f_1 302$	1 a ₂ 286 4 e 413	$\begin{array}{c} 3 \ b_1 \ 426 \\ 3 \ a_2 \ 326 \\ 3 \ b_2 \ 346 \end{array}$	4 e 333 2 a ₂ 370	$2 f_1 365$
cage breathing mode	1 a ₁ 597	3 a ₁ 585	5 a ₁ 501	3 a ₁ 479	1 a ₁ 392
symmetric bending motion of $O-P^{v}-O$ cage bond (see Figure 2	$2 f_2 570$	2 a ₁ 510 5 e 562	4 a ₁ 585 4 b ₂ 539 4 b ₁ 571	6 e 557 4 a ₁ 574	3 f ₂ 573
stretch motion (see Figure 2)	$3 f_2 626$	4 a ₁ 617 6 e 630	6 a ₁ 665 5 b ₂ 627 5 b ₁ 689	7 e 642 5 a ₁ 673	4 f ₂ 675
umbrella mode (see Figure 2)	2 a ₁ 739	5 a ₁ 697	7 a ₁ 691	6 a ₁ 724	$2 a_1 706$
antisymmetric stretching of PO_3 and $S=P^{V}O_3$ units, respectively (see Figure 2)	2 e 633	7 e 687	8 a ₁ 741 4 a ₂ 686	8 e 716	3 e 730
similar to the 2 e mode of P_4O_6 (see Figure 2)	2 f ₁ 645	2 a ₂ 659 8 e 702	6 b ₁ 704 5 a ₂ 739 6 b ₂ 731	9 e 744 3 a ₂ 774	$3 f_1 775$
symmetric stretch (ν_s) in PO ₃ and S=PO ₃ units, respectively (see Figure 2)	4 f ₂ 946	7 a ₁ 947 9 e 960	9 a ₁ 972 7 b ₂ 965 7 b ₁ 975	11 e 970 8 a ₁ 974	6 f ₂ 986
neg. linear combination of stretching of $P^V = S$		6 0 910	$8 b_2 772$	10e 795	$5 f_2 807$
pos. nnear combination of stretching of P = S		0 a ₁ 812	10 a ₁ 855	/ a1 891	5 a ₁ 929

Figure 2. Pictorial representation of the vibrational modes of the $P-O_3$ unit of P₄O₆ cage structure.

bonding situation. Table 6 contains the correlation of the vibrational bands within the $P_4O_6S_m$ (m = 0-4) series and a brief description of the nuclear motions connected with each mode. The nuclear displacements of some modes are also indicated in Figure 2.

a. Cage Modes. In P₄O₆, the first cage mode appears at 298 cm^{-1} (1e). It correlates with the 2e mode (295 cm^{-1}) of P₄O₆S, the $2a_1$ (307 cm⁻¹), and $2a_2$ (303 cm⁻¹) modes of P₄O₆S₂, the 3e mode (300 cm⁻¹) of $P_4O_6S_3$, and 2e (315 cm⁻¹) mode of P₄O₆S₄. These modes correspond to O–P–O bending vibrations of the P_4O_6 cage. Since the contributions from the $P^V=S$ are negligible for these modes, the increase in the frequencies of these modes along the $P_4O_6S_m$ (m = 0-4) series is a first evidence for the reinforcement of the cage bonds within the $P_4O_6S_m$ (m = 0-4) series.

The next mode, within the P_4O_6 spectrum (1f₂: 410 cm⁻¹) represents a linear combination of umbrella motions of PO3

subunits (Figure 2). It is related to the $2f_2$ mode of $P_4O_6S_4$, which appears at 350 cm⁻¹. In this mode, P^V=S moves as a unit, i.e., the P^V=S distance is kept constant during the vibration. Consequently, the mass of the moving atoms increases along the P₄O₆S_m (m = 0-4) series, resulting in a negative shift of the frequency along the series. The strongest frequency shift $(\approx 200 \text{ cm}^{-1})$ in the series is found for the cage breathing mode $(P_4O_6: 1a_1 \text{ at } 597 \text{ cm}^{-1}; P_4O_6S_4: 1 a_1 \text{ at } 392 \text{ cm}^{-1})$. Since the P^{III} centers in the series are successively substituted by P^V=S groups, the shift again results from an increase of the mass of the moving atoms. For both modes, the PO₃ umbrella mode and the cage breathing mode, influences from the strengthening of the P-O cage bonds are small because they are mainly described by a cage bending motions in which the bond distances of the P–O cage bonds remains nearly constant.

The $2f_2$ mode at 570 cm⁻¹ for P₄O₆ represents a symmetric bending motion of O-P-O cage bonds (Figure 2). It correlates to the 3f₂ mode of P₄O₆S₄. Both appear at the similar frequencies $(\approx 570 \text{ cm}^{-1})$. The small shift found for this mode results from a cancellation of the strengthening of the P–O cage bonds and the increase of the mass due to the substitution.

Modes involving the stretch motions of the P–O cage bond show a shift to higher frequency along the $P_4O_6S_m$ (m = 0-4) series. For P_4O_6 , these modes occur at 626 cm⁻¹ (3f₂), 633 cm⁻¹ (2e), and 645 cm⁻¹ (2f₁). They are related to those modes of $P_4O_6S_4$ that appear at 675 cm⁻¹ (4f₂), 730 cm⁻¹ (3e), and 775 cm^{-1} (3f₁). These modes represent linear combination of antisymmetric stretching vibrations of the P-O cage bonds (Figure 2). The increase of the frequencies (49, 97, 130 cm^{-1} , respectively) shows the increase in the bond strength of the cage bonds; the variation within the frequency shift results from the interplay between the G and F matrix elements.

For the P_4O_6 , the highest cage mode appears at 946 cm⁻¹. It involves the symmetric stretch of the PO₃ unit (Figure 2). It can be related to the $6f_2$ in the $P_4O_6S_4$ (986 cm⁻¹), but this mode possesses strong contribution from $P^{V}=S$ vibrations. Therefore, a detailed discussion about this mode will be provided in the next section.

b. Vibrational Modes Involving the P^V=S Motions. The modes which involve the bending of the P^V=S bond lie at the lower frequency range of the spectra ($140-190 \text{ cm}^{-1}$), while the P^V=S stretching vibrations appear in the same energy region of the spectra as the cage stretching modes ($900-1100 \text{ cm}^{-1}$).

Going from P₄O₆S to multiple substituted compounds, the normal modes connected with the P^V=S stretch vibrations split into a mode representing the in-phase linear combination of the P^V=S stretch motions (a₁ symmetry) and one additional mode representing the out-of-phase linear combinations. The latter possesses b₂ symmetry (772 cm⁻¹) for P₄O₆S₂, e symmetry (795 cm⁻¹) for P₄O₆S₃, and f₂ symmetry (807 cm⁻¹) for P₄O₆S₄. The a₁ mode lies always at a higher frequency (P₄O₆S₂:10a₁, 855 cm⁻¹; P₄O₆S₃: 7a₁, 891 cm⁻¹; P₄O₆S₄: 3a₁, 929 cm⁻¹) than the out-of-phase modes.

The energetical ordering of the in-phase and out-of-phase mode is best understood in terms of two coupled $P^{V}=S$ oscillators in a linear arrangement. In this model, the in-phase (symmetric) stretch mode (S_1) interacts with the vibration of both P^{V} with respect to each other (S₂), while due to the symmetry, the out-of-phase (antisymmetric) stretch mode (S_3) cannot couple. When both terminal $P^V=S$ oscillators are not coupled ($F_{21} = 0$), clearly the modes connected with the S₁ and S_3 are degenerate and, in this case, the frequency of the S_2 mode is zero. For $F_{22} > 0$ (i.e., increasing coupling), the frequency associated with the vibration of both P^V=X units with respect to each other (S₂) becomes greater than zero and due to its coupling with the S_1 vibration, shifts the frequency of this vibration to higher frequencies, while the frequency of the outof-phase stretch mode remains unchanged. The splitting between the in-phase and the out-of-phase combination increases from about 80 cm⁻¹ for $P_4O_6S_2$ to about 120 cm⁻¹ for $P_4O_6S_4$. This splitting increases because the frequency shift found within the P₄O₆S₄ series is more pronounced for the in-phase combination than for the out-of-phase combination (117 cm^{-1} vs 35 cm^{-1}). For $P_4O_6S_4$, couplings between cage and $P^V=S$ vibrations are furthermore found in the $5f_2$ mode (807 cm⁻¹) and the $6f_2$ (986 cm^{-1}) mode. While the former corresponds mainly to an outof-phase stretching motion of the PV=S, with a small contribution of cage vibration, the $6f_2$ can be described as a cage mode with a small contribution of the P^V=S out-of-phase stretching.

The lower frequency range of the spectra (<250 cm⁻¹) involves only bending vibrations of the P^V=S units. For P₄O₆S₂, four modes result from the linear combination of the two terminal P^V=S bending motion: a₁ (156 cm⁻¹), b₂ (213 cm⁻¹), a₂ (194 cm⁻¹), b₁ (186 cm⁻¹). While the a₁ (b₂) mode represents mainly the negative (positive) linear combination of the P^V=S bending motion within the mirror plane cutting through both S atoms (Figure 1), the a₂ mode (negative linear combination) and b₁ mode (positive linear combination) are built from the P^V=S bending vibrations perpendicular to this mirror plane. Going from P₄O₆S₂ to P₄O₆S₃, the modes a₁ and a₂ transform into the 1e mode, which is at 148 cm⁻¹ for the P₄O₆S₄ spectrum.

Comparing the nuclear vibrations for P_4O_6 and for $P_4O_6S_4$, one notices that both modes $1f_1$ (220 cm⁻¹) and $2f_2$ of $P_4O_6S_4$ (350 cm⁻¹) are related to the $1f_1$ mode (302 cm⁻¹) of the P_4O_6 . Both can be described as combinations of the libration motion of PO₃ units with the terminal P^V=S bending motions (Figure 2). The contribution of the P^V=S bending vibrations is responsible for the low frequency of the $1f_1$ mode of $P_4O_6S_4$ (220 cm⁻¹). On the other hand, the higher frequency of the $2f_1$ Valentim et al.

mode of $P_4O_6S_4$ lying about 60 cm⁻¹ above the $1f_2$ of P_4O_6 results from O–P–O bending motions of the cage. For P_4O_6S , $P_4O_6S_2$, and $P_4O_6S_3$, contributions of the PO₃ libration are found in almost all P^V=S bending modes. The increased coupling results from the lower symmetry of these molecules.

Comparison between P4O₆S_{*m*} (m = 0-4) and P4O_{*n*} (n = 6-10) series. Comparing both series, the strongest differences can be expected for modes involving the terminal bond P^V=S or P^V=O. In both series the bending motion of P^V=X represents the energetically lowest bands. Going from oxygen to sulfur substituents, the frequency of the P^V=X bending decreases by about 110 cm⁻¹. This shift results from differences in the mass (16 amu) and the bond distance (0.4 Å).

The strong decrease of the $P^V=X$ stretching mode, if X = O is compared to X = S, is obviously related to the decrease in the $P^V=S$ bond strength. While the $P^V=S$ stretching motions appear in the same energy region as the stretching vibration of the P_4O_6 cage (900 cm⁻¹), the $P^V=O$ stretch modes lie much higher (1300 cm⁻¹). This indicates that the product of the **G** and **F** matrix elements connected with $P^V=S$ bond stretching motion is similar to that connected with P-O cage bonds stretching, while for $P^V=O$ bonds this product is much higher.

The different splitting between the in-phase and the out-ofphase linear combinations of the $P^{V}=X$ stretching motions (e.g. P_4O_8 : 18 cm⁻¹, $P_4O_6S_2$: 83 cm⁻¹) results from differences in the bond-strength of the P=X bond and the different masses.

Differences in the cage modes are more interesting than the obvious effects in the $P^V=X$ motions discussed above. Within both series, the cage breathing modes possess the strongest shift to lower frequencies ($P_4O_6S_m$: 205 cm⁻¹; P_4O_n : 68 cm⁻¹). The difference between both series results from the greater increase in the reduced mass, when the P^{III} unit is replaced by the $P^V=S$ and the $P^V=O$ unit, respectively.

In both series, strong positive frequency shifts are found for those modes connected with the $3f_2$ (626 cm⁻¹), the 2e (633 cm⁻¹), and the $2f_1$ (645 cm⁻¹) mode of P₄O₆. These modes correlate with the $4f_2$, the 3e, and the $3f_1$, respectively, in the $P_4O_6X_4$ spectrum (X = O, S) (Table 6 and ref 4). For P_4O_n (n = 6-10), we find frequency shifts of 141, 178, and 187 cm⁻¹, respectively, while 49, 97, and 130 cm⁻¹, respectively are obtained for the $P_4O_6S_m$ (m = 0-4) series. This shows that the shifts increase by a factor of 3 for the first and a factor of 1.5-1.8 for the two others, if one goes from the P_4O_n (n = 6-10) to the $P_4O_6S_m$ (m = 0-4) series. The large difference in the shift of the first mode $(4f_2)$ results from coupling between cage vibrations and P^V=X stretch vibrations. Such coupling occurs only for $P_4O_6S_m$ (m = 0-4) series. For the 3e and the 3f₁ modes, the couplings between cage and P^V=X vibrations are smaller. Therefore, the different frequency shifts in these two cage modes comparing the P₄O_n (n = 6-10) and the P₄O₄S_m (m = 0-4) series indicate a somewhat larger increase in the P-O cage bonding strength in the oxygen-substituted compounds relative to the sulfur substitution. This finding is also reflected the computed force constants. As expected, in going from $P_4O_6S_2$ to P_4O_8 , this constant increases from 0.484 to 0.518 au for the P^V-O_c stretch motion, and from 0.417 au to 0.445 au for P^V- O_b stretching, while those related to P^{III}-O_a stretching are virtually identical in both compounds (0.366 vs 0.367 au).

Such interpretation that the P–O cage bond of the oxygensubstituted compounds is somewhat stronger than those of the sulfur-substituted compounds is also supported by comparing the P–O bond lengths in the cage in going from P_4O_6 to P_4O_{10} . Acknowledgment. The authors thank Dr. Miljenko Perić for fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 334).

References and Notes

 Clade, J.; Frick, F.; Jansen, M. Adv. Inorg. Chem. 1994, 41, 327.
 Valentim, A. R. S.; Engels, B.; Peyerimhoff, S. D.; Clade, J.; Jansen, M. Inorg. Chem. 1997, 36, 2451.

- (3) Valentim, A. R. S.; Engels, B.; Peyerimhoff, S. D.; Tellenbach, A.; Strojek, S.; Jansen, M. Z. Anorg. Allg. Chem. **1998**, 624, 642.
- (4) Valentim, A. R. S.; Engels, B.; Peyerimhoff, S. D.; Clade, J.; Jansen,
 M. J. Phys. Chem. A 1998, 21, 3690.

(5) Pulay, P.; Forgarasi, G.; Ponger, G.; Boggs, J. E.; Vargha, A. J. Am. Chem. Soc. **1983**, 105, 7037.

- (6) Frick, F. Dissertation, Bonn University, 1993.
- (7) Zijp, D. H. Adv. Mol. Spectrosc. 1962, 1-3, 345.
- (8) Gerding, H.; v. Bredemode, H. Recl. Trav. Chim. Pays-Bas 1945, 64, 549.

(9) Huzinaga, H. Approximate Atomic Wave functions, I, II. Department of Chemistry Report, University of Alberta, Alberta, Canada, 1965.

(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. P.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Reploge, E. S.; Gomperts, R.; Martin, R. L.; Fox, J. F.; Bincley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. *Gaussian94*; Killedan Inc.: Pittsburgh, PA, 1995.

(11) Pulay, P., and co-workers, TX90, Fayetteville, AR, 1990.

(12) Schafternaar, G., MOLDEN, CAOS/CAMM Center Nijmegen, Toernooiveld, Nijmegen, The Netherlands, 1991.

(13) Mühlhäuser, M.; Engels, M.; Marian, C. M.; Peyerimhoff, S. D.; Bruna, P. B.; Jansen, M. Angew. Chem. 1994, 106, 576.

(14) Walker, M. L.; Peckenpaugh, D. E.; Mills, J. L. Inorg. Chem. 1979, 18, 2792.

(15) Wilson, E. B.; Decius, J. C.; Cross, P. C. *Molecular Vibrations*; McGraw-Hill: New York, 1955.